Prima prova di Analisi Matematica I

Tempo a disposizione: 1 ora e 30 minuti

PUNTEGGI: **Esercizi 1-5**: risposta esatta = +5; risposta sbagliata = -0.5; risposta non data = 0. **Esercizio 6**: risposta esatta = +1; risposta sbagliata = -0.25; risposta non data = 0.

1. Sia $z \in \mathbb{C}$ dato da

$$z = \left(\frac{(\sqrt{3} + e^{i\frac{\pi}{2}})(8|i| - 1)}{|1 + i|^2(1 + e^{i\pi} + e^{i\frac{\pi}{6}})e^{-i\frac{\pi}{2}}}\right)^5$$

Allora $\bar{z} + |z|$ vale

 $Risp.: \boxed{\mathbf{A}} : 7^5(1-i) \quad \boxed{\mathbf{B}} : 7^5(1+i) \quad \boxed{\mathbf{C}} : 7(1+i) \quad \boxed{\mathbf{D}} : 1-i$

2. Il limite

$$\lim_{x \to 0^+} \frac{\ln(1+x+x^2) - x + 3x^3}{\sqrt[3]{1+x^2} - \cosh x}$$

vale

 $Risp.: \overline{\mathbf{A}}: 3 \quad \overline{\mathbf{B}}: -3 \quad \overline{\mathbf{C}}: \frac{1}{3} \quad \overline{\mathbf{D}}: 2$

3. Sia data la funzione

$$f(x) = \begin{cases} \arctan \frac{1}{|x-1|} & \text{se } x \neq 1 \\ \\ \frac{\pi}{2} & \text{se } x = 1. \end{cases}$$

Allora il punto $x_0 = 1$

Risp.: $\boxed{\mathbf{A}}$: è un punto angoloso con $f'_-(1) = -1$ e $f'_+(1) = 1$ $\boxed{\mathbf{B}}$: è un punto di cuspide $f'_-(1) = -\infty$ e $f'_+(1) = +\infty$ $\boxed{\mathbf{C}}$: è un punto di derivabilità con f'(1) = 0 $\boxed{\mathbf{D}}$: è un punto angoloso con $f'_-(1) = 1$ e $f'_+(1) = -1$

4. Sia $\alpha \in \mathbb{R}.$ L'integrale improprio

$$\int_0^{+\infty} \frac{\ln^2(e^x + 1)}{x^{\alpha}(x^{10} + 1)} \, dx$$

converge se e solo se

 $\textit{Risp.:} \ \boxed{\mathbf{A}}: \alpha > 7 \quad \boxed{\mathbf{B}}: -7 < \alpha < 1 \quad \boxed{\mathbf{C}}: -3 < \alpha < 1 \quad \boxed{\mathbf{D}}: \alpha > 3$

5. Sia y(x) la soluzione di

$$\begin{cases} xy' + y = 3\sin x \\ y(\frac{\pi}{2}) = 0. \end{cases}$$

Allora $y(\pi)$ vale

Risp.: $\boxed{\mathbf{A}} : -\frac{7}{\pi} \quad \boxed{\mathbf{B}} : \frac{\pi}{7} \quad \boxed{\mathbf{C}} : \frac{3}{\pi} \quad \boxed{\mathbf{D}} : -\frac{1}{\pi}$

6. Sia data la funzione f definita da

$$f(x) = |x - 1|e^{-x}$$

Dire se le seguenti affermazioni sono vere o false.

- (a) $\lim_{x \to -\infty} f(x) = +\infty$ V F
- (b) $\lim_{x\to+\infty} f(x) = +\infty$ V F
- (c) y = x 1 è asintoto obliquo a $-\infty$ $\boxed{\mathbf{V}}$ $\boxed{\mathbf{F}}$
- (d) $f'_{-}(1) = -e^{-1}$ V F
- (e) $f(]1, +\infty[) =]0, e^{-2}]$ V F